

EX NAVODAYAN FOUNDATION

(Registered Under Indian Trust Act 1882)Reg. No. : 2016, 43B/36/43 46M Brahmanand Colony, Durgakund, Varanasi (UP) 221005Mob.: 8958143003Email Id : exnavodayanfoundation@gmail.com

01/02/2023 Morning

Answers & Solutions

Time : 3 hrs.

M.M.: 300

JEE (Main)-2023 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) The Test Booklet consists of 90 questions. The maximum marks are 300.
- (3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
 - (i) **Section-A:** This section contains 20 multiple choice questions which have only one correct answer. Each question carries **4 marks** for correct answer and **-1 mark** for wrong answer.
 - Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

'n' polarizing sheets are arranged such that each 1 makes an angle 45° with the preceeding sheet. An unpolarized light of intensity I is incident into this arrangement. The output intensity is found to be

 $\frac{1}{64}$. The value of *n* will be

(1) 3 (2) 4 (4) 5

Answer (3)

Sol.
$$I_{\text{final}} = \frac{I}{2} \left(\frac{1}{2}\right)^{n-1}$$
$$\frac{I}{6^4} = \frac{I}{2^n}$$
$$n = 6$$

2. A block of mass 5 kg is placed at rest on a table of rough surface. Now, if a force of 30 N is applied in the direction parallel to surface of the table, the block slides through a distance of 50 m in an interval of time 10 s. Coefficient of kinetic friction is (given, $g = 10 \text{ ms}^{-2}$)

(1)	0.50	(2)	0.60
(3)	0.75	(4)	0.25

Answer (1)

Sol. $a = \frac{30 - 50\mu}{5}$ \cdots s - $ut + \frac{1}{2}at^2$

$$50 = \frac{1}{2} \left(\frac{30 - 50\mu}{5} \right) \times 100$$

$$5 = 30 - 50\mu$$

$$\mu = \frac{25}{15} = 0.5$$

3. Given below are two statements:

> Statement I: Acceleration due to gravity is different at different places on the surface of earth.

> Statement II: Acceleration due to gravity increases as we go down below the earth's surface.

In the light of the above statements, choose the correct answer from the options given below

- (1) Statement I is false but Statement II is true
- (2) Statement I is true but Statement II is false
- (3) Both statement I and statement II are false
- (4) Both statement I and statement II are true

Answer (2)

Sol. Statement-I is correct as $g' = g - \omega^2 R \cos^2 \phi$

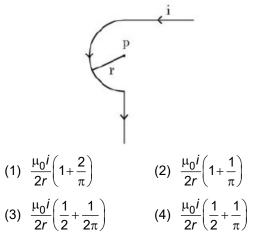
Statement-II is clearly incorrect.

4. Match List I with List II:

	List I		List II
А.	Intrinsic semiconductor	I.	Fermi-level near the valance band
В.	n-type semiconductor	II.	Fermi-level in the middle of the valence and conduction band
C.	p-type semiconductor	111.	Fermi-level near the conduction band
D.	Metals	IV.	Fermi-level inside the conduction band

Choose the *correct* answer from the options given below:

- (1) A-II, B-III, C-I, D-IV
- (2) A-I, B-II, C-III, D-IV
- (3) A-II, B-I, C-III, D-IV
- (4) A-III, B-I, C-II, D-IV


Answer (1)

- Sol. (Theoretical)
 - (A) Intrinsic semiconductor \rightarrow II
 - (B) n-type semiconductor \rightarrow III
 - (C) p-type semiconductor \rightarrow I
 - (D) Metals \rightarrow IV

5.
$$\left(P + \frac{\alpha}{V^2}\right)(V - b) = RT$$
 represents the equation of
state of some gases. Where *P* is the pressure, *V* is
the volume, *T* is the temperature and *a*, *b*, *R* are the
constants. The physical quantity, which has
dimensional formula as that of $\frac{b^2}{a}$, will be
(1) Compressibility (2) Energy density
(3) Modulus of rigidity (4) Bulk modulus
Answer (1)
Sol. $[a] = [ML^5T^{-2}]$
 $[b] = [L^3]$

$$\left\lfloor \frac{b^2}{a} \right\rfloor = \left\lfloor \frac{L^{\circ}}{ML^5T^2} \right\rfloor = [M^{-1}LT^{-2}]$$

- = [Compressibility]
- 6. Find the magnetic field at the point *P* in figure. The curved portion is a semicircle connected to two long straight wires.

Answer (3)

Sol.
$$B_P = \frac{\mu_0 i}{4\pi r} + \frac{1}{2} \left(\frac{\mu_0 i}{2r} \right)$$
$$\frac{\mu_0 i}{4r} \left[\frac{1}{\pi} + 1 \right]$$

- 7. A steel wire with mass per unit length 7.0 × 10^{-3} kg m⁻¹ is under tension of 70 N. The speed of transverse waves in the wire will be
 - (1) 200π m/s (2) 100 m/s
 - (3) 50 m/s (4) 10 m/s

Answer (2)

Sol. Speed of transverse wave = $\sqrt{\frac{T}{M}}$

$$=\sqrt{\frac{70}{7 \times 10^{-3}}} = 100 \text{ m/s}$$

8. A sample of gas at temperature *T* is adiabatically expanded to double its volume. The work done by the gas in the process is $\left(\text{given}, \gamma = \frac{3}{2}\right)$

(1)
$$W = \frac{T}{R} [\sqrt{2} - 2]$$

(2) $W = RT [2 - \sqrt{2}]$
(3) $W = TR [\sqrt{2} - 2]$
(4) $W = \frac{R}{T} [2 - \sqrt{2}]$

Answer (2)

Sol.
$$\gamma = \frac{3}{2}$$

$$\omega = \frac{nR\Delta T}{1-\gamma} = \frac{nRT_f - nRT_i}{1-\gamma}$$

$$= \frac{(PV)_f - (PV_i)}{1-\gamma} \qquad \dots (1)$$

$$PV^{\gamma} = \text{constant}$$

$$P_i V_i^{\gamma} = P_f (2V_i)^{\gamma} \Rightarrow P_f = \frac{P_i}{2^{\gamma}} = \frac{P_i}{2\sqrt{2}} \qquad \dots (2)$$
From (1) and (2)

$$\omega = \frac{\frac{P_i}{2\sqrt{2}} 2V_i - P_i V_i}{1-\gamma} = \frac{P_i V_i}{-1/2} \left(\frac{1}{\sqrt{2}} - 1\right)$$

$$= -nRT(\sqrt{2} - 2)$$
$$= nRT(2 - \sqrt{2})$$

- 9. The average kinetic energy of a molecule of the gas is
 - (1) dependent on the nature of the gas
 - (2) proportional to volume
 - (3) proportional to absolute temperature
 - (4) proportional to pressure

Answer (3)

Sol. Average kinetic energy of a molecule of gas

$$=\frac{f}{2}k_{B}T$$

f is degree of freedom.

10. Match List I with List II

	List I	List II			
A.	AC generator	I.	Presence of both L and C		
В.	Transformer	II.	Electromagnetic Induction		
C.	Resonance phenomenon to occur	III.	Quality factor		
D.	Sharpness of resonance	IV.	Mutual Induction		

Choose the correct answer from the options given below

- (1) A-II, B-I, C-III, D-IV (2) A-II, B-IV, C-I, D-III
- (3) A-IV, B-II, C-I, D-III (4) A-IV, B-III, C-I, D-II

Answer (2)

Sol. AC generator works on EMZ principle (A-II) Transformer uses Mutual induction (B-IV)

Resonance occurs when both L and C are present (C-Z) and quality factor determines sharpness of resonance (D-III)

11. Which of the following frequencies does not belong to FM broadcast.

(1) 99 MHz	(2) 64 MHz
(3) 89 Mhz	(4) 106 MHz

Answer (2)

Sol. FM broadcast varies from 89 Hz to 108 Hz

12. If earth has a mass nine times and radius twice to

that of a planet P. Then $\frac{v_e}{3}\sqrt{x}ms^{-1}$ will be the

minimum velocity required by a rocket to pull out of gravitational force of, P, where v_e is is escape velocity on earth. The value of *x* is

(1) 2	(2) 18
(3) 1	(4) 3

Answer (1)

Sol.
$$M_E = 9M_P$$

 $R_E = 2R_P$

Escape velocity $= \sqrt{\frac{2mG}{R}}$ For earth $v_e = \sqrt{\frac{2GM_E}{R_E}}$

For P,
$$v_e = \sqrt{\frac{\frac{2GM_E}{9}}{\frac{R_E}{2}}} = \sqrt{\frac{2GM_E}{R_E} \times \frac{2}{9}}$$
$$= \frac{v_e \sqrt{2}}{3}$$

- 13. The mass of proton, neutron and helium nucleus are respectively 1.0073*u*, 1.0087*u* and 4.0015*u*. The binding energy of helium nucleus is
 - (1) 56.8 MeV (2) 28.4 MeV
 - (3) 7.1 MeV (4) 14.2 MeV

Answer (2)

Sol. Mass defect = 2 (Mass of *p* + mass of *n*) – mass of He nucleus

 $\Delta m = 0.0305 u$

 $B.E = 931.5 \times \Delta m = 931.5 \times 0.0305$

= 28.4 MeV

- 14. A proton moving with one tenth of velocity of light has a certain de Broglie wavelength of λ. An alpha particle having certain kinetic energy has the same de-Brogle wavelength λ. The ratio of kinetic energy of proton and that of alpha particle is
 - (1) 1:4
 - (2) 1:2
 - (3) 2:1
 - (4) 4:1

Answer (4)

Sol. For same λ_1 momentum should be

same,

$$(P)_{P} = (P)_{\alpha}$$

$$\Rightarrow \sqrt{2k_{P}m_{P}} = \sqrt{2k_{\alpha}m_{\alpha}}$$

$$\Rightarrow k_{P}m_{P} = k_{\alpha}m_{\alpha}$$

$$\frac{k_{P}}{k_{\alpha}} = \left(\frac{m_{\alpha}}{m_{P}}\right) = \frac{4}{1} = 4:1$$

15. A mercury drop of radius 10⁻³ m is broken into 125 equal size droplets. Surface tension of mercury is 0.45 Nm⁻¹. The gain in surface energy is

(1) 17.5×10⁻⁵ J	(2) 28 × 10 ^{−5} J
(3) 5 × 10 ^{–₅} J	(4) 2.26 ×10⁻⁵ J

Answer (4)

Sol. Initial volume = Final volume

So,
$$R = 5r$$

Gain in surface energy =
$$[125 \times 4\pi r^2 \times T - 4\pi R^2 T]$$

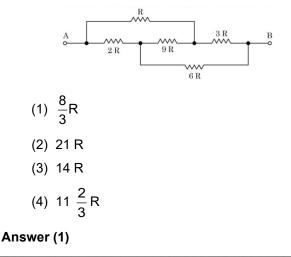
= $4\pi T [125r^2 - R^2]$
= $16\pi R^2 T$
= $16\pi \times (10^{-3})^2 \times 0.45$
= $22.6 \times 10^{-6} J$
= $2.26 \times 10^{-5} J$

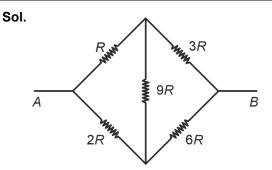
16. Match List I with List II:

List I

List II

A.	Microwaves	I.	Radio active decay of the nucleus
A.	Microwaves	1.	

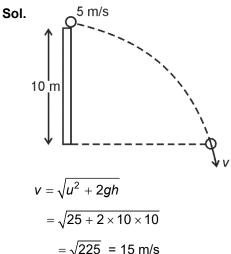

- B. Gamma rays II. Rapid acceleration and deceleration of electron in aerials
- C. Radio waves III. Inner shell electrons
- D. X-rays IV. Klystron valve


Choose the *correct* answer from the options given below:

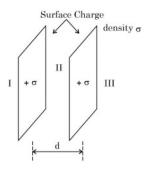
- (1) A-I, B-II, C-III, D-IV
- (2) A-IV, B-I, C-II, D-III
- (3) A-IV, B-III, C-II, D-I
- (4) A-I, B-III, C-IV, D-II

Answer (2)

- Sol. 1. Klystron valve used to produce Microwave
 - 2. Gamma ray \rightarrow Radioactive decay
 - Radio wave → Rapid acceleration and deacceleration of electrons in aerials
 - 4. X-ray \rightarrow Inner shell electrons
- 17. The equivalent resistance between *A* and *B* of the network shown in figure:



This is balanced Wheatstone bridge,


$$R_{\rm eq} = \frac{4R \times 8R}{12R} = \left(\frac{8R}{3}\right)^2$$

18. A child stands on the edge of the cliff 10 m above the ground and throws a stone horizontally with an initial speed of 5 ms⁻¹. Neglecting the air resistance, the speed with which the stone hits the ground will be ____ ms⁻¹

Answer (1)

19. Let σ be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region E_{l} , E_{ll} and E_{lll} are :

(1)
$$\vec{E}_{I} = 0, \vec{E}_{II} = \frac{\sigma}{\epsilon_{0}} \hat{n}, E_{III} = 0$$

(2) $\vec{E}_{I} = -\frac{\sigma}{\epsilon_{0}} \hat{n}, E_{II} = 0, \vec{E}_{III} = \frac{\sigma}{\epsilon_{0}} \hat{n}$
(3) $\vec{E}_{I} = -\frac{2\sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{II} = 0, \vec{E}_{III} = \frac{2\sigma}{\epsilon_{0}} \hat{n}$
(4) $\vec{E}_{I} = -\frac{\sigma}{2\epsilon_{0}} \hat{n}, \vec{E}_{II} = 0, \vec{E}_{III} = \frac{\sigma}{2\epsilon_{0}} \hat{n}$

Answer (2)

Sol.

Sol. From the figure:

$$\overline{E_1} = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0}$$
 (Leftward)
$$\overline{E_2} = \frac{\sigma}{2\varepsilon_0} - \frac{\sigma}{2\varepsilon_0}$$
$$\overline{E_3} = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0}$$
(Rightward)

20. An object moves with speed v_1 , v_2 and v_3 along a line segment AB, BC and CD respectively as shown in figure. Where AB=BC and AD = 3AB, then average speed of the object will be:

$$(1) \quad \frac{V_1 V_2 V_3}{3(v_1 v_2 + v_2 v_3 + v_3 v_1)}$$

$$(2) \quad \frac{(v_1 + v_2 + v_3)}{3}$$

$$(3) \quad \frac{3v_1 v_2 v_3}{(v_1 v_2 + v_2 v_3 + v_3 v_1)}$$

$$(4) \quad \frac{(v_1 + v_2 + v_3)}{3v_1 v_2 v_3}$$
Answer (3)
Sol. AB = BC = CD
$$\Rightarrow \quad \text{Average speed} = \frac{\text{Distance}}{T}$$

$$= \frac{AD}{\frac{AB}{V_1} + \frac{AB}{V_2} + \frac{AB}{V_3}}$$
$$= \frac{3V_1V_2V_3}{V_1V_2 + V_2V_3 + V_1V_3}$$

Time

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the numerical value (in decimal correct notation. truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. A thin cylindrical rod of length 10 cm is placed horizontally on the principle axis of a concave mirror of focal length 20 cm. The rod is placed in a such a way that mid point of the rod is at 40 cm from the pole of mirror. The length of the image formed by

the mirror will be $\frac{x}{3}$ cm. The value of x is

Answer (32)

Sol.

$$\begin{array}{c}
10 \text{ cm} \\
A : \frac{1}{v} + \frac{1}{u} = \frac{1}{f} \\
\Rightarrow \frac{1}{v} + \frac{1}{-45} = \frac{1}{-20} \\
\Rightarrow \frac{1}{v} = \frac{1}{45} - \frac{1}{20} = \frac{4 - 9}{180} = -\frac{1}{36} \\
\Rightarrow v = -36 \text{ cm} \\
\text{B:} \quad \frac{1}{v} + \frac{1}{-35} = \frac{1}{-20} \\
\Rightarrow \frac{1}{v} = \frac{1}{35} - \frac{1}{20} = \frac{4 - 7}{140} \\
\Rightarrow v = -\frac{140}{3} \\
\Rightarrow \text{ length of image } = \frac{140}{3} - 36 = \frac{32}{3} \text{ cm} \\
\Rightarrow x = 32
\end{array}$$

22. The amplitude of a particle executing SHM is 3 cm. The displacement at which its kinetic energy will be 25% more than the potential energy is: ______ cm.

K = 1.25U

$$\Rightarrow K + \frac{K}{1.25} = K_{\text{max}}$$

$$\Rightarrow \frac{9}{5}K = K_{max}$$

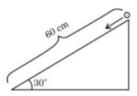
$$\Rightarrow \frac{9}{5}\frac{1}{2}mv^2 = \frac{1}{2}mv_{max}^2$$

$$\Rightarrow \frac{9}{5}\left[\omega\sqrt{A^2 - x^2}\right]^2 = \omega^2 A^2$$

$$\Rightarrow 9(A^2 - x^2) = 5A^2$$

$$\Rightarrow x^2 = \frac{4A^2}{9}$$

$$\Rightarrow x = \frac{2A}{3}$$


$$\Rightarrow$$
 x = 2 cm

23. A certain pressure 'P' is applied to 1 litre of water and 2 litre of a liquid separately. Water gets compressed to 0.01% whereas the liquid gets compressed to 0.03%. The bulk modulus of water

to that of the liquid is $\frac{3}{x}$. The value of x is

Sol.
$$B = \frac{-dp}{\frac{dv}{v}}$$

 $\Rightarrow \frac{B_{water}}{B_{Liquid}} = \frac{\left(\frac{dv}{v}\right)_{liquid}}{\left(\frac{dv}{v}\right)_{water}}$
 $= \frac{0.03}{0.01} = 3$
 $\Rightarrow x = 1$

24. A solid cylinder is released from rest from the top of an inclined plane of inclination 30° and length 60 cm. If the cylinder rolls without slipping, its speed upon reaching the bottom of the inclined plane is ms⁻¹. (Given $g = 10 \text{ ms}^{-2}$)

Answer (2)

Sol. Loss in potential energy = mgh = mg[60 sin30° cm]

$$\Rightarrow mg\left[\frac{30}{100}\right] = \frac{1}{2}mv^2 + \frac{1}{2}\frac{mv^2}{2}$$
$$\Rightarrow 0.3 \times 10 = \frac{3}{4}v^2$$
$$\Rightarrow v^2 = 4$$
$$\Rightarrow v = 2 \text{ m/s}$$

25. A light of energy 12.75 eV is incident on a hydrogen atom in its ground state. The atom absorbs the radiation and reaches to one of its excited states. The Angular momentum of the atom in the excited

state is
$$\frac{x}{m} \times 10^{-17}$$
 eVs. The value of x is
(use h = 4.14 × 10⁻¹⁵ eVs, c = 3 × 10⁸ ms⁻¹).

Answer (828)

Sol. Let the electron jumps to *n*th orbit so

$$12.75 = 13.6 \left[\frac{1}{1^2} - \frac{1}{n^2} \right]$$

$$\Rightarrow n = 4$$

So $L = \frac{nh}{2\pi} = \frac{2h}{\pi}$

$$= \frac{2 \times 4.14 \times 10^{-15}}{\pi}$$

$$= 8.28 \times 10^{-15}$$

$$= 828 \times 10^{-17} \text{ eVs}$$

26. A small particle moves to position $5\hat{i} - 2\hat{j} + \hat{k}$ from its initial position $2\hat{i} + 3\hat{j} - 4\hat{k}$ under the action of force $5\hat{i} + 2\hat{j} + 7\hat{k}$ N. The value of work done will be _______J.

Answer (40)

Sol.
$$W = \vec{F} \cdot (\vec{r}_2 - \vec{r}_1)$$

= $(5\hat{i} + 2\hat{j} + 7\hat{k}) \cdot (3\hat{i} - 5\hat{j} + 5\hat{k})$
= $15 - 10 + 35$
= 40 J

27. A series LCR circuit is connected to an ac source of 220 V, 50 Hz. The circuit contain a resistance R = 100 Ω and an inductor of inductive reactance X_L = 79.6 Ω . The capacitance of the capacitor needed to maximize the average rate at which energy is supplied will be ______ μ F.

Answer (40)

Sol. Average rate of energy is maximum at resonance.

$$\therefore X_L = X_C$$

$$79.6 = \frac{1}{2\pi(50) \times C}$$

$$C = \frac{1}{79.6 \times 2\pi(50)}$$

- $\approx 40\,\mu F$
- 28. Two equal positive point charges are separated by a distance 2a. The distance of a point from the centre of the line joining two charges on the equatorial line (perpendicular bisector) at which force experienced by a test charge q₀ becomes

maximum is
$$\frac{a}{\sqrt{x}}$$
. The value of x is _____

Answer (2)

Sol.
$$F_P = q_0 E_p = q_0 \frac{kqz}{(a^2 + z^2)^{3/2}}$$

or $F_P = \frac{kqq_0 z}{(a^2 + z^2)^{3/2}}$
• +q

To maximize
$$\frac{dF_P}{dz} = 0$$

or $kqq_0 \frac{\left(a^2 + z^2\right)^{3/2} - z\frac{3}{2} \times 2z\left(a^2 + z^2\right)^{\frac{1}{2}}}{\left(a^2 + z^2\right)^3} = 0$
 $\Rightarrow z = \frac{a}{\sqrt{2}}$

29. A charge particle of 2 μ C accelerated by a potential difference of 100 V enters a region of uniform magnetic field of magnitude 4 mT at right angle to the direction of field. The charge particle completes semicircle of radius 3 cm inside magnetic field. The mass of the charge particle is _____ × 10⁻¹⁸ kg.

Answer (144)

Sol.
$$R = \frac{\sqrt{2mqV}}{qB}$$
$$R = \frac{1}{B}\sqrt{\frac{2mV}{q}}$$
or
$$m = \frac{R^2B^2q}{2V}$$
$$= \frac{\left(3 \times 10^{-2}\right)^2 \times \left(4 \times 10^{-3}\right)^2 \times 2 \times 10^{-6}}{2 \times 100}$$

30. In an experiment to find emf of a cell using potentiometer, the length of null point for a cell of emf 1.5 V is found to be 60 cm. If this cell is replaced by another cell of emf E, the length of null

point increases by 40 cm. The value of E is $\frac{x}{10}$ V.

The value of x is _____.

$$\frac{E_1}{E_2} = \frac{l_1}{l_2}$$
$$\frac{1.5}{E} = \frac{60}{100}$$
$$E = \frac{150}{60} = \frac{5}{2} = \frac{25}{10}$$
so x = 25

CHEMISTRY

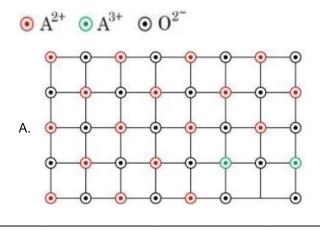
SECTION - A

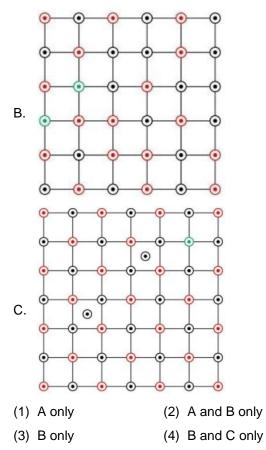
Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

31. Given below are two statements:

Statement I: Chlorine can easily combine with oxygen to form oxides; and the product has a tendency to explode.


Statement II: Chemical reactivity of an element can be determined by its reaction with oxygen and halogens.


In the light of the above statements, choose the **correct** answer from the options given below

- (1) Statement I is true but Statement II is false
- (2) Both the Statements I and II are true
- (3) Statement I is false but Statement II is true
- (4) Both the Statements I and II are false

Answer (2)

- **Sol.** Chlorine can easily combine with oxygen to form oxides, which can explode
 - Chemical reactivity of an element can be determined by its reaction with oxygen and Halogens
- 32. Which of the following represents the lattice structure of A_{0.95}O containing A²⁺, A³⁺ and O²⁻ ions?

Answer (1)

% of
$$A^{2+} = \frac{85}{95} \times 100 \approx 90\%$$

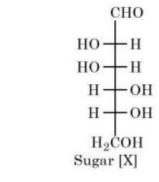
% of
$$A^{3+} = \frac{10}{95} \times 100 \approx 10\%$$

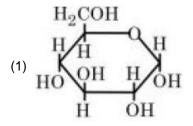
Option (A) satisfies this condition

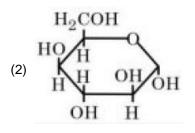
Given below are two statements: one is labelled as
 Assertion A and the other is labelled as Reason R

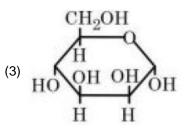
Assertion A: Hydrogen is an environment friendly fuel.

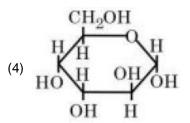
Reason R: Atomic number of hydrogen is 1 and it is very light element.

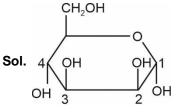

In the light of the above statements, choose the **correct** answer from the options given below


- (1) Both **A** and **R** are true and **R** is the correct explanation of **A**
- (2) A is true but R is false


- (3) Both A and R are true but R is **NOT** the correct explanation of A
- (4) A is false but R is true


Answer (3)


- **Sol.** Hydrogen is an environment friendly fuel as its combustion produces only water vapours.
- 34. The correct representation in six membered pyranose form for the following sugar [X] is



 C_2 and C_3OH are cis C_3 and C_4 are anti to each other.

35. Match List I with List II

	List I		List II
(A)	Tranquilizers	(I)	Anti blood clotting
(B)	Aspirin	(II)	Salvarsan
(C)	Antibiotic	(III)	Antidepressant drugs
(D)	Antiseptic	(IV)	Soframicine

Choose the correct answer from the options given below:

- $(1) \ (A) II, (B) IV, (C) I, (D) III$
- (2) (A) II, (B) I, (C) III, (D) IV
- (3) (A) IV, (B) II, (C) I, (D) III
- (4) (A) III, (B) I, (C) II, (D) IV

Answer (4)

- Sol. (A) Tranquilizers are antidepressant drugs
 - (B) Aspirin prevents blood clotting and hence Anti blood clotting
 - (C) Salvarsan is an antibiotic
 - (D) Soframicine is antiseptic
- 36. Given below are two statements: one is labelled as **Assertion A** and the other is labelled as **Reason R.**

Assertion A: In an Ellingham diagram, the oxidation of carbon to carbon monoxide shows a negative slope with respect to temperature.

Reason R: CO tends to get decomposed at higher temperature.

In the light of the above statements, choose the **correct** answer from the options given below.

- (1) A is not correct but R is correct
- (2) A is correct but R is not correct
- (3) Both **A** and **R** are correct but **R** is **NOT** the correct explanation of A
- (4) Both **A** and **R** are correct and **R** is the correct explanation of **A**

Answer (2)

Sol.
$$C(s) + \frac{1}{2}O_2(g) \longrightarrow CO(g)$$
 ($\Delta S > 0$)
Slope = (-ve)

CO doesn't get decompose at high temperature.

37. Match List I with List II

	List I		List II
	Test		Functional group/Class of compound
(A)	Molisch's Test	(I)	Peptide
(B)	Biuret Test	(II)	Carbohydrate
(C)	Carbylamine Test	(111)	Primary amine
(D)	Schiff's Test	(IV)	Aldehyde

Choose the correct answer from the options given below:

- (1) A(III), B(IV), C(II), D(I)
- (2) A(I), B(II), C(III), D(IV)
- (3) A(II), B(I), C(III), D(IV)
- (4) A(III), B(IV), C(I), D(II)

Answer (3)

- Sol. (A) Molisch test is for carbohydrates
 - (B) Biuret test is for proteins/peptide
 - (C) Carbylamine test is for primary amine
 - (D) Schiff's test is for aldehyde
- A solution of FeCl₃ when treated with K₄[Fe(CN)₆] gives a prussiun blue precipitate due to the formation of
 - (1) $Fe_3[Fe(CN)_6]_2$ (2) $Fe_4[Fe(CN)_6]_3$
 - (3) $Fe[Fe(CN)_6]$ (4) $K[Fe_2(CN)_6]$

Answer (2)

 $\textbf{Sol.} \ \ \textbf{Fe}^{3+} + [\textbf{Fe}(\textbf{CN})_6]^{4-} \longrightarrow \textbf{Fe}_4[\textbf{Fe}(\textbf{CN})_6]_3$

prussian blue

- Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.
 - Assertion A: Amongst He, Ne, Ar and Kr; 1g of activated charcoal adsorbs more of Kr.

Reason R:	The critical volume Vc(cm ³ mol ⁻¹)				
	and critical pressure P_c (atm) is				
	highest for Krypton but the				
	compressibility factor at critical				
	point Z_c is lowest for Krypton.				

In the light of the above statements, choose the **correct** answer from the options given below.

- (1) Both **A** and **R** are true but **R** is **NOT** the correct explanation of **A**
- (2) A is true but R is false
- (3) A is false but R is true
- (4) Both **A** and **R** are true and **R** is the correct explanation of **A**

Answer (2)

- **Sol.** MW order, Kr > Ar > Ne > He
 - Z (at critical point)

$$=\frac{3}{8}$$

- 40. Which of the following complex will show largest splitting of d-orbitals?
 - (1) $[Fe(C_2O_4)_3]^{3-}$ (2) $[FeF_6]^{3-}$
 - (3) $[Fe(CN)_6]^{3-}$ (4) $[Fe(NH_3)_6]^{3+}$

Answer (3)

- **Sol.** CN⁻ is strongest field ligand among given ligands.
- 41. Which of the following are the example of double salt?
 - (A) FeSO₄.(NH₄)₂SO₄.6H₂O
 - (B) CuSO₄.4NH₃.H₂O
 - (C) $K_2SO_4.AI_2(SO_4)_3.24H_2O$
 - (D) Fe(CN)₂.4KCN

Choose the correct answer

- (1) B and D only (2) A and C only
- (3) A, B and D only (4) A and B only

Answer (2)

Sol. A = FeSO₄· (NH₄)₂SO₄·6H₂O –double salt

B. CuSO₄·4NH₃·H₂O

= $[Cu(NH_3)_4]SO_4 \cdot H_2O$ –complex salt

-complex salt

- C. $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$ –double salt
- D. Fe(CN)₂·4KCN K₄[Fe(CN)₆]

- 42. How can photochemical smog be controlled?
 - (1) By complete combustion of fuel.
 - (2) By using catalyst.
 - (3) By using catalytic convertors in the automobiles/industry.
 - (4) By using tell chimneys.

Answer (3)

Sol. Photochemical smog is caused by

Nitrogen oxides which can be prevented by using catalytic convertors in the automobiles/industy

43. But-2-yne is reacted separately with one mole of Hydrogen as shown below

$$\underline{\mathbf{B}} \xleftarrow{\mathrm{Na}}_{\mathrm{liq} \mathrm{NH}_3} \mathrm{CH}_3 - \mathrm{C} \equiv \mathrm{C} - \mathrm{CH}_3 \xrightarrow{\mathrm{Pd/C}} \underline{\mathbf{A}}$$

- (A) A is more than soluble than B.
- (B) The boiling point & melting point of A are higher and lower than B respectively.
- (C) A is more polar than B because dipole moment of A is zero.
- (D) Br₂ adds easily to B than A.

Identify the incorrect statements from the option given below

- (1) A, C & D only (2) B, C & D only
- (3) B and C only (4) A and B only

Answer (2)

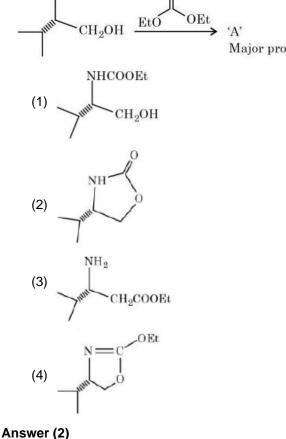
- Sol. A: Cis But-2-ene
 - B: Trans-But-2-ene

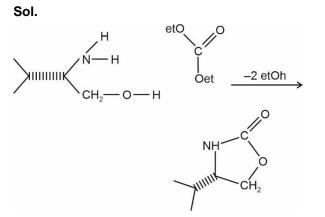
BP: A > B

mp: B > A

 μ -order = B > A (μ of A = 0)

Addition of Br₂ is easy in A.


- 44. Choose the correct statement(s)
 - (A) Beryllium oxide is purely acidic in nature.
 - (B) Beryllium carbonate is kept in the atmosphere of CO_2 .
 - (C) Beryllium sulphate is readily soluble in water.
 - (D) Beryllium shows anomalous behaviour.


Choose the correct answer from the options given below:

- (1) A, B & C only (2) A only
- (3) A and B only (4) B, C and D only

Answer (4)

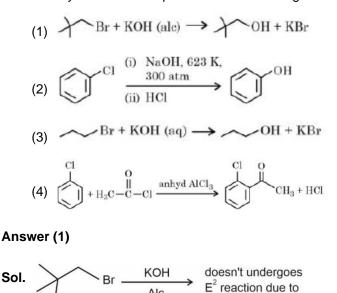
Sol. • BeO is amphoteric • BeCO₃ \rightleftharpoons BeO + CO₂ To shift equilibrium in backward direction, It is kept in atmosphere of CO₂ BeSO₄ is readily soluble in water · Be shows anomalous behaviour 45. Highest oxidation state of Mn is exhibited in Mn₂O₇. The correct statements about Mn₂O₇ are (A) Mn is tetrahedrally surrounded by oxygen atoms. (B) Mn is octahedrally surrounded by oxygen atoms. (C) Contains Mn-O-Mn bridge. (D) Contains Mn-Mn bond. Choose the correct answer from the options below: (2) B and C only (1) A and C only (3) A and D only (4) B and D only Answer (1) Sol. \cap Mn is surrounded tetrahedrally by O-atoms. Mn₂O₇, contains Mn-O-Mn Bridge. In the following reaction, 'A' is 46. NH2 EtÓ OEt CH₂OH 'A' Major product NHCOOEt (1)CH₂OH

47. Match List-I with List-II

	List-I		List-II
Α.	Slaked lime	١.	NaOH
В.	Dead burnt plaster	II.	Ca(OH) ₂
C.	Caustic soda	III.	Na ₂ CO ₃ .10H ₂ O
D.	Washing soda	IV.	CaSO ₄

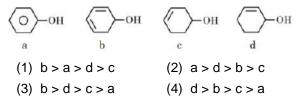
Choose the **correct** answer from the options given below.

- (1) A II, B IV, C I, D III
- (2) A III, B IV, C II, D I
- (3) A III, B II, C IV, D I
- (4) A I, B IV, C II, D III

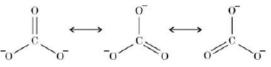

Answer (1)

В:

Sol. A : Slaked lime : Ca(OH)₂


Dead burnt plaster : CaSO₄

- C : Caustic Soda : NaOH
- D : Washing Soda : Na₂CO₃ · 10H₂O
- 48. Identify the incorrect option from the following.


absence of α-H

49. Decreasing order of dehydration of the following alcohols is

Answer (3)

- **Sol.** b > d > c > a
 - b will form Aromatic Benzene on dehydration
 - d will form conjugated alkene
 - a will not undergo dehydration easily
- 50. Resonance in carbonate ion (CO₃²⁻) is

Which of the following is true?

- (1) CO_3^{2-} has a single structure i.e., resonance hybrid of the above three structures.
- (2) It is possible to identify each structure individually by some physical or chemical method.
- (3) Each structure exists for equal amount of time.
- (4) All these structures are in dynamic equilibrium with each other.

Answer (1)

Sol. Resonating structures are hypothetical and are assumed to explain properties of Real hybrid.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse andw the on-screen virtual numeric keypad in the place designated to enter the answer.

51. Sum of oxidation states of bromine in bromic acid and perbromic acid is _____.

Answer (12)

Sol. Bromic Acid

HBrO₃ HBrO₄

Perbromic Acid HBr

52. Number of isomeric compounds with molecular formula C₉H₁₀O which (i) do not dissolve in NaOH (ii) do not dissolve in HCI. (iii) do not give orange precipitate with 2, 4-DNP (iv) on hydrogenation give identical compound with molecular formula C₉H₁₂O is .

Answer (2)

Sol. 2 possibilities

$$CH = C \xrightarrow{CH_3}_{OH} (E/Z \text{ Isomers})$$

$$Ph \xrightarrow{C} C = C \xrightarrow{CH_3}_{OH} (E)$$

$$Ph \xrightarrow{C} C = C \xrightarrow{CH_3}_{OH} (E)$$

$$Ph \xrightarrow{C} C = C \xrightarrow{CH_3}_{OH} (Z)$$

53. 25 mL of an aqueous solution of KCI was found to require 20 mL of 1 M AgNO₃ solution when titrated using K₂CrO₄ as an indicator. What is the depression in freezing point of KCI solution of the given concentration? _____ (Nearest integer).

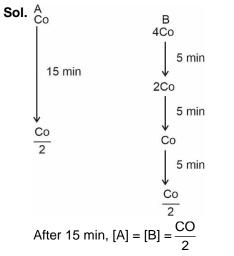
(Given: $K_f = 2.0 \text{ K kg mol}^{-1}$)

Assume (1) 100% ionization and

(2) Density of the aqueous solution as 1 g mL⁻¹

Answer (3)

Sol. 25 × M = 20 × 1


$$M = \frac{20}{25} = \frac{4}{5} = 0.8$$
$$\Delta T_{f} = (i) (K_{f}) (m)$$
$$(4) = 16$$

$$= (2) (2) \left(\frac{4}{5}\right) = \frac{10}{5} = 3.2$$

Nearest Integer - 3

54. A and B are two substances undergoing radioactive decay in a container. The half life of A is 15 min and that of B is 5 min. If the initial concentration of B is 4 times that of A and they both start decaying at the same time, how much time will it take for the concentration of both of them to be same? _____ min.

Answer (15)

55. At 25°C, the enthalpy of the following processes are given

$$\begin{array}{ll} H_2(g) + O_2(g) & \rightarrow 2OH(g) & \Delta H^\circ = 78 \text{ kJ mol}^{-1} \\ H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g) & \Delta H^\circ = -242 \text{ kJ mol}^{-1} \\ H_2(g) & \rightarrow 2H(g) & \Delta H^\circ = 436 \text{ kJ mol}^{-1} \\ \frac{1}{2} O_2(g) & \rightarrow O(g) & \Delta H^\circ = 249 \text{ kJ mol}^{-1} \end{array}$$

What would be the value of X for the following reaction? _____ (Nearest integer)

$$H_2O(g) \rightarrow H(g) + OH(g) \Delta H^\circ = X \text{ kJ mol}^{-1}$$

Answer (499)

Sol.
$$\frac{(i) + (iii)}{2} - (ii)$$
 gives desired reaction

$$\Delta H_r = \frac{436 + 78}{2} - (-242)$$

$$= \frac{436 + 78}{2} + 242 = 499$$

56. The density of 3 M solution of NaCl is 1.0 g mL⁻¹. Molality of the solution is $____$ × 10⁻² m. (Nearest integer).

Given : Molar mass of Na and Cl is 23 and 35.5 g $\rm mol^{-1}$ respectively.

Sol.
$$m = \frac{1000 \text{ M}}{1000 \text{ } \rho - \text{M.mw}} = \frac{1000 \times 3}{1000 - 3 \times (58.5)}$$

= $\frac{3000}{(1000 - 175.5)} = 3.638$
= 363.8×10^{-2}
Nearest integer = 364

57. Electrons in a cathode ray tube have been emitted with a velocity of 1000 m s⁻¹. The number of following statements which is/are <u>true</u> about the emitted radiation is ______.

Given : $h = 6 \times 10^{-34} \text{ J s}$, $m_e = 9 \times 10^{-31} \text{ kg}$.

- (A) The deBroglie wavelength of the electron emitted is 666.67 nm.
- (B) The characteristic of electrons emitted depend upon the material of the electrodes of the cathode ray tube.
- (C) The cathode rays start from cathode and move towards anode.
- (D) The nature of the emitted electrons depends on the nature of the gas present in cathode ray tube.

Answer (2)

- Sol. Characteristics of electrons emitted doesn't depend upon material of electrode, nature of gas present.
 - Cathode rays start from cathode

$$\lambda = \frac{h}{mv} = \frac{6 \times 10^{-34}}{(9 \times 10^{-31})(10^3)} = .666 \times 10^{-6} m$$

= 666.67 nm

A & C are correct.

58. (i)
$$X(g) \rightleftharpoons Y(g) + Z(g)$$
 $K_{p1} = 3$

K_{p2} = 1 (ii) $A(g) \rightleftharpoons 2B(g)$

If the degree of dissociation and initial concentration of both the reactants X(g) and A(g) are equal, then the ratio of the total pressure at

equilibrium $\left(\frac{p_1}{p_2}\right)$ is equal to x:1. The value of x is (Nearest integer)

Answer (12)

Sol.

 $\begin{array}{cccc} X_{(g)} & & & \\ & & & \\ \downarrow & & & & \\ (1-\alpha) & \alpha & \alpha \end{array} & & \\ K_{p_1} = 3 \\ & & \\ K_{p_1} = 3 \\ & \\ K_{p_1} = 3 \\$ $\begin{pmatrix} \frac{1-\alpha}{1+\alpha} \end{pmatrix} \qquad \qquad \begin{pmatrix} \frac{\alpha}{1+\alpha} \end{pmatrix} \quad \begin{pmatrix} \frac{\alpha}{1+\alpha} \end{pmatrix}$ mole fraction $K_{p_1} = 3 = \frac{\alpha}{(1+\alpha)} \frac{\alpha}{(1+\alpha)} \frac{(1+\alpha)}{(1-\alpha)} (p_1)^1$ $3 = \frac{\alpha^2}{1 - \alpha^2} \cdot p_1$ $\begin{array}{ccc} A_{(g)} & & & K_{p_2} = 1 \\ \downarrow & & \downarrow \\ (1-\alpha) & & 2\alpha \end{array}$ 2α mole fraction

$$1 = \frac{4\alpha^2}{(1+\alpha)^2} \frac{(1+\alpha)}{(1-\alpha)} \cdot p_2$$
$$1 = \frac{4\alpha^2}{1-\alpha^2} \cdot p_2$$
$$\frac{Kp_1}{Kp_2} = \frac{3}{1} = \frac{p_1}{4p_2}$$
$$\Rightarrow \frac{p_1}{p_2} = 12$$

59. At what pH, given half cell MnO₄⁻(0.1 M) | Mn²⁺ (0.001 M) will have electrode potential of 1.282 V? (Nearest Integer)

Given
$$E^{\circ}_{MnO_{4}^{-}|Mn^{2+}} = 1.54V, \frac{2.303RT}{F} = 0.059V$$

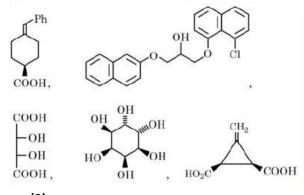
Answer (3)

Sol.
$$5e^- + 8H^+ + MnO_4^- \longrightarrow Mn^{2+} + 4H_2O$$

A 0-1

$$10^{-1} 10^{-3}$$

$$1.282 = 1.54 - \frac{.059}{5} \log \frac{10^{-3}}{10^{-1} (H^+)^8}$$


$$-.258 = \frac{-.059}{5} (-2 + 8 \text{ pH})$$

$$21.8644 = (-2 + 8 \text{ pH})$$

$$23.8644 = 8 \text{ pH}$$

$$\text{pH} = 2.98 \approx 3$$

60. The total number of chiral compound/s from the following is _

Answer (2)

Sol. Compound I - achiral

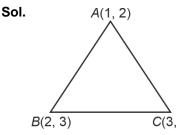
Compound II - chiral

Compound III - achiral

Compound IV - chiral

Compound V - achiral

MATHEMATICS


SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- 61. If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3, 1) is (α , β), then the quadratic equation whose roots are α + 4 β and 4 α + β , is
 - (1) $x^2 20x + 99 = 0$ (2) $x^2 19x + 90 = 0$
 - (3) $x^2 22x + 120 = 0$ (4) $x^2 18x + 99 = 0$

Answer (1)

Altitude of *BC* is $y-2 = \frac{1}{2}(x-1) \Rightarrow x-2y+3 = 0$

Altitude of *AB* is $y - 1 = (-1)(x - 3) \Rightarrow x + y = 4$

- $\therefore \quad \text{Orthocentre}\left(\frac{5}{3}, \frac{7}{3}\right)$
- $\therefore \alpha + 4\beta = 11 \text{ and } 4\alpha + \beta = 9$

Equation is
$$x^2 - 20x + 99 = 0$$

- 62. The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5, then the sum of cubes of the remaining two observations is
 - (1) 1456
 - (2) 1216
 - (3) 1792
 - (4) 1072

Answer (4)

Sol. Let observations 1, 3, 5, a, b

$$\Rightarrow \frac{9+a+b}{5} = 5 \& \frac{a^2+b^2+35}{5} - 25 = 8$$

$$\Rightarrow a+b = 16 \& a^2 + b^2 = 130$$

$$\therefore a \& b \text{ are } 7 \& 9$$

$$\therefore a^3 + b^3 = 7^3 + 9^3 = 1072$$

- 63. If the centre and radius of the circle $\left|\frac{z-2}{z-3}\right| = 2$ are respectively (α, β) and γ , then $3(\alpha + \beta + \gamma)$ is equal to (1) 10 (2) 12
 - (3) 11 (4) 9

Answer (2)

Sol.
$$(x-2)^2 + y^2 = 4(x-3)^2 + 4y^2$$

 $\Rightarrow 3x^2 + 3y^2 - 20x + 32 = 0$
 $\therefore C = \left(\frac{10}{3}, 0\right) \& r = \sqrt{\left(\frac{10}{3}\right)^2 - \frac{32}{3}} = \frac{2}{3}$
 $\therefore 3(\alpha + \beta + \gamma) = 3\left(\frac{12}{3}\right) = 12$

64. If y = y(x) is the solution curve of the differential equation $\frac{dy}{dx} + y$ tan $x = x \sec x$, $0 \le x \le \frac{\pi}{3}$, y(0) = 1, then $y\left(\frac{\pi}{6}\right)$ is equal to (1) $\frac{\pi}{12} - \frac{\sqrt{3}}{2}\log_e\left(\frac{2\sqrt{3}}{e}\right)$ (2) $\frac{\pi}{12} + \frac{\sqrt{3}}{2}\log_e\left(\frac{2}{e\sqrt{3}}\right)$ (3) $\frac{\pi}{12} + \frac{\sqrt{3}}{2}\log_e\left(\frac{2\sqrt{3}}{e}\right)$ (4) $\frac{\pi}{12} - \frac{\sqrt{3}}{2}\log_e\left(\frac{2}{e\sqrt{3}}\right)$

Answer (4)

Sol.
$$\frac{dy}{dx} + y \tan x = x \sec x$$

 \therefore I.F = $e^{\int \tan x dx} = \sec x$
 $\Rightarrow y \sec x = \int x \sec^2 x dx$
 $\Rightarrow y \sec x = x \tan x - \ln|\sec x| + c \cos x$
 $\downarrow y(0) = 1$
 $\Rightarrow 1 = e$
 $\therefore y = x \sin x - \cos x \ln|\sec x| + \cos x$

 $\therefore \quad y\left(\frac{\pi}{6}\right) = \frac{\pi}{12} - \frac{\sqrt{3}}{2} \ln\left(\frac{2}{\sqrt{3}e}\right)$

65.		to 10				series
	$\frac{1}{1+1^2+1^4}+\frac{1}{2}$	$\frac{2}{1+2^2+2^4}$	$+\frac{3}{1+3^2}$	<mark>⊦ 3</mark> 4	+ is	
			_	-		
	(1) $\frac{58}{111}$		(2) $\frac{5}{1}$	9 11		
	(3) $\frac{55}{111}$		(4) $\frac{5}{1}$	6 11		
Ans	wer (3)					
Sol.	$S = \sum_{r=1}^{10} \frac{r}{1+r^2}$	$\frac{1}{r+r^4} = \frac{1}{2}\sum_{n=1}^{\infty}$	$\sum \left(\frac{1}{r^2 - r}\right)$	+1	$\frac{1}{r^2 + r}$	<u> </u>
	$T_1 = \frac{1}{2} \left(\frac{1}{1^2 - 1} \right)$	$\frac{1}{1+1} - \frac{1}{1^2+1}$	$\overline{I+1}$			
	$T_2 = \frac{1}{2} \left(\frac{1}{2^2 - 1} \right)^2$	$\frac{1}{2+1} - \frac{1}{2^2}$	$\left(\frac{1}{2+1}\right)$			
	$T_3 = \frac{1}{2} \left(\frac{1}{3^2 - 1} \right)^2$	$\frac{1}{3+1} - \frac{1}{3^2}$	$\left(\frac{1}{3+1}\right)$			
	$T_{10} = \frac{1}{2} \left(\frac{1}{10^2} \right)^2$	$\frac{1}{-10+1} - \frac{1}{2}$	$\frac{1}{10^2 + 10}$	<u>+1</u>)		
	$S = \frac{1}{2} \left(1 - \frac{1}{11} \right)$	$\left(\frac{1}{1}\right) = \frac{55}{111}$				

66. The combined equation of the two lines ax + by + c= 0 and a'x + b'y + c' = 0 can be written as (ax + by + c) (a'x + b'y + c') = 0

The equation of the angle bisectors of the lines represented by the equation $2x^2 + xy - 3y^2 = 0$ is

(1) $3x^2 + 5xy + 2y^2 = 0$ (2) $x^2 - y^2 + 10xy = 0$ (3) $3x^2 + xy + 2y^2 = 0$ (4) $x^2 - y^2 - 10xy = 0$

Answer (4)

Sol. $\frac{x^2 - y^2}{2 - (-3)} = \frac{xy}{\frac{1}{2}}$ OR $x^2 - y^2 = 10xy$

67. Let S be the set of all solutions of the equation

$$\cos^{-1}(2x) - 2\cos^{-1}\left(\sqrt{1-x^{2}}\right) = \pi, \ x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$

Then $\sum_{x \in S} 2 \sin^{-1}(x^{2} - 1)$ is equal to
(1) $\frac{-2\pi}{3}$ (2) 0
(3) $\pi - \sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$ (4) $\pi - 2\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$
Answer (*)

Sol.
$$\cos^{-1}(2x) - 2\cos^{-1}(\sqrt{1-x^2}) = \pi$$

This is possible only when
 $\cos^{-1}(2x) = \pi$...(i)
And $2\cos^{-1}\sqrt{1-x^2} = 0$...(ii)
From (i)
 $x = -\frac{1}{2}$
Which does not satisfy (ii)
So no such *x* exist
68. The value of
 $\frac{1}{1!50!} + \frac{1}{3!48!} + \frac{1}{5!46!} + \dots + \frac{1}{49!2!} + \frac{1}{5!1!}$ is :
(1) $\frac{2^{50}}{51!}$ (2) $\frac{2^{51}}{51!}$
(3) $\frac{2^{50}}{50!}$ (4) $\frac{2^{51}}{50!}$
Answer (1)
Sol. $\frac{1}{(51)!} {5^{1}C_{1} + {}^{51}C_{3} + \dots + {}^{51}C_{51}}$
 $= \frac{2^{50}}{(51)!}$

69. Let S denote the set of all real values of λ such that the system of equations

$$\lambda x + y + z = 1$$

$$x + \lambda y + z = 1$$
is inconsistent, then
$$\sum_{\lambda \in S} (|\lambda|^2 + |\lambda|)$$
 is equal to
$$(1) \ 4 \qquad (2) \ 2$$

$$(3) \ 6 \qquad (4) \ 12$$
Answer (3)
Sol.
$$\begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$$

$$\lambda (\lambda^2 - 1) - 1 \ (\lambda - 1) + 1 \ (1 - \lambda) = 0$$

$$\lambda^3 - \lambda - \lambda + 1 + 1 - \lambda = 0$$

$$\lambda^3 - 3\lambda + 2 = 0$$

$$(\lambda - 1) (\lambda^2 + \lambda - 2) = 0$$

 $\lambda = 1, -2$

For $\lambda = 1 \implies \infty$ solution

 $\lambda = -2 \Rightarrow$ no solution

$$\sum_{\lambda \in S} \left|\lambda\right|^2 + \left|\lambda\right| = 6$$

- 70. For a triangle *ABC*, the value of cos2A + cos2B + cos2C is least. If its inradius is 3 and incentre is *M*, then which of the following is NOT correct?
 - (1) $\overrightarrow{MA} \cdot \overrightarrow{MB} = -18$
 - (2) perimeter of $\triangle ABC$ is $18\sqrt{3}$
 - (3) area of $\triangle ABC$ is $\frac{27\sqrt{3}}{2}$
 - (4) $\sin 2A + \sin 2B + \sin 2C = \sin A + \sin B + \sin C$

Answer (3)

Sol. We know that

 $\cos 2A + \cos 2B + \cos 2C \ge \frac{-3}{2}$ where equality

holds for equilateral triangle

$$r = \frac{\Lambda}{s} = \frac{\frac{\sqrt{3}}{4}a^2}{\frac{3}{2}a} = \frac{a}{2\sqrt{3}}$$

$$a = 2\sqrt{3}r = 6\sqrt{3}$$
Area
$$= \frac{\sqrt{3}}{4}a^2 = 27\sqrt{3}$$
71. Let
$$f(x) = \begin{vmatrix} 1+\sin^2 x & \cos^2 x & \sin 2x \\ \sin^2 x & 1+\cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & 1+\sin 2x \end{vmatrix}$$
,
$$x \in \left\lfloor \frac{\pi}{6}, \frac{\pi}{3} \right\rfloor$$
. If α and β respectively are the maximum and the minimum values of f , then
$$(1) \quad \beta^2 + 2\sqrt{\alpha} = \frac{19}{4}$$

$$(2) \quad \alpha^2 + \beta^2 = \frac{9}{2}$$

$$(3) \quad \alpha^2 - \beta^2 = 4\sqrt{3}$$

$$(4) \quad \beta^2 - 2\sqrt{\alpha} = \frac{19}{4}$$
Answer (4)

Sol. $C_1 \rightarrow = C_1 + C_2 + C_3$ $(2 + \sin 2x) \begin{vmatrix} 1 & \cos^2 x & \sin 2x \\ 1 & 1 + \cos^2 x & \sin 2x \\ 1 & \cos^2 x & 1 + \sin 2x \end{vmatrix}$ $R_2 \rightarrow R_2 \rightarrow R_1; R_3 \rightarrow R_3 \rightarrow R_1$ $(2 + \sin 2x) \begin{vmatrix} 1 & \cos^2 x & \sin 2x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ $f(x) = 2 + \sin 2x; x \in \lfloor \frac{\pi}{6}, \frac{\pi}{3} \rfloor$ $f(x)_{max} = 2 + 1 = 3 \text{ for } x = \frac{\pi}{4}$ $f(x)_{min} = 2 + \frac{\sqrt{3}}{2} \text{ for } x = \frac{\pi}{6}, \frac{\pi}{3}$ $\beta^2 - 2\sqrt{\alpha} = 4 + \frac{3}{4} + 2\sqrt{3} - 2\sqrt{3}$ $= \frac{19}{4}$

72. The area enclosed by the closed curve *C* given by the differential equation $\frac{dy}{dx} + \frac{x+a}{y-2} = 0, y(1) = 0$ is 4π .

Let P and Q be the points of intersection of the curve C and the *y*-axis. If normals at P and Q on the curve C intersect *x*-axis at points R and S respectively, then the length of the line segment RS

(1) 2 (2)
$$\frac{2\sqrt{3}}{3}$$

(3) $2\sqrt{3}$ (4) $\frac{4\sqrt{3}}{3}$

Answer (4)

is

Sol.
$$\frac{dy}{dx} + \frac{x+a}{y-2} = 0$$

(y-2)dy + (x + a)dx = 0
Integrating
$$\frac{y^2}{2} - 2y + \frac{x^2}{2} + ax = C$$

Or x² + 2ax + y² - 4y = C
At x = 1, y = 0

1 + 2a = C Equation of circle $x^{2} + 2ax + y^{2} - 4y = 1 + 2a$ $x^{2} + y^{2} + 2ax - 4y - (1 + 2a) = 0$ $r = \sqrt{a^{2} + 4 + 1 + 2a} = 2$ $a^{2} + 2a + 5 = 4 \implies \boxed{a = -1}$ Curve is $x^{2} + y^{2} - 2x - 4y + 1 = 0$ Intersection with *y*-axis $P = (0, 2 + \sqrt{3}) \qquad Q \equiv (0, 2 - \sqrt{3})$ For normal at P & Q $R = \left(1 + \frac{2}{\sqrt{3}}, 0\right), S = \left(1 - \frac{2}{\sqrt{3}}, 0\right)$ $RS = \frac{4\sqrt{3}}{3}$

73. Let $f(x) = 2x + \tan^{-1} x$ and

$$g(x) = \log_{e}(\sqrt{1+x^{2}}+x), x \in [0,3].$$
 Then

- (1) min $f(x) = 1 + \max g'(x)$
- (2) there exist $0 < x_1 < x_2 < 3$ such that f(x) < g(x), $\forall x \in (x_1, x_2)$
- (3) there exists $\hat{x} \in [0, 3]$ such that $f'(\hat{x}) < g'(\hat{x})$
- (4) max $f(x) > \max g(x)$

Answer (4)

Sol.
$$f'(x) = 2 + \frac{1}{1+x^2}, g'(x) = \frac{1}{\sqrt{x^2+1}}$$

 $f''(x) = -\frac{2x}{(1+x^2)^2} < 0$
 $g''(x) = -\frac{1}{2}(x^2+1)^{-3/2} \cdot 2x < 0$
 $f'(x)|_{\min} = f'(3) = 2 + \frac{1}{10} = \frac{21}{10}$
 $g'(x)|_{\max} = g'(0) = 1$
 $f'(x)|_{\max} = f(3) = 2 + \tan^{-1}3$
 $g(x)|_{\max} = g(3) = \ln(3 + \sqrt{10}) < \ln < 7 < 2$
74. In a binomial distribution $B(n, p)$, the sum a

74. In a binomial distribution B(n, p), the sum and the product of the mean and the variance are 5 and 6 respectively, then 6(n + p - q) is equal to

Answer (1)	
(3) 53	(4) 51
(1) 52	(2) 50

Sol.
$$np + npq = 5$$

 $np(1 + q) = 5$...(i)
 $np(npq) = 6$...(ii)
 $\Rightarrow np = 3, npq = 2$
 $\Rightarrow q = \frac{2}{3}, p = \frac{1}{3}, n = 9$
 $6(n + p - q) = 6\left(9 + \frac{1}{3} - \frac{2}{3}\right) = 6\left(9 - \frac{1}{3}\right)$
 $= 52$

75. The shortest distance between the lines

$$\frac{x-5}{1} = \frac{y-2}{2} = \frac{z-4}{-3} \text{ and } \frac{x+3}{1} = \frac{y+5}{4} = \frac{z-1}{-5} \text{ is}$$
(1) $5\sqrt{3}$
(2) $6\sqrt{3}$
(3) $4\sqrt{3}$
(4) $7\sqrt{3}$

Answer (2)

Sol.
$$\vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 1 & 4 & -5 \end{vmatrix} = \hat{i}(2) - \hat{j}(-2) + \hat{k}(2)$$

 $\therefore \quad \vec{b_1} \times \vec{b_2} = \hat{i} + \hat{j} + \hat{k}$
 $\vec{a_1} - \vec{a_2} = 8\hat{i} + 7\hat{j} + 3\hat{k}$
 $d = \left| \frac{\left(\vec{a_1} - \vec{a_2}\right) \cdot \left(\vec{b_1} \times \vec{b_2}\right)}{\left|\vec{b_1} \times \vec{b_2}\right|} \right| = \left| \frac{8 + 7 + 3}{\sqrt{3}} \right| = \frac{18}{\sqrt{3}} = 6\sqrt{3}$
76. $\lim_{n \to \infty} \left| \frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \dots + \frac{1}{2n} \right|$ is equal to
(1) 0 (2) $\log_e\left(\frac{3}{2}\right)$
(3) $\log_e 2$ (4) $\log_e\left(\frac{2}{3}\right)$

Answer (3)

Sol.
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} \dots \frac{1}{n+n} \right)$$
$$= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \left(\frac{1}{1 + \left(\frac{r}{n} \right)} \right)$$
$$= \int_{0}^{1} \frac{dx}{1+x} = \log(1+x)_{0}^{1} = \log 2$$

77. Let *R* be a relation on \mathbb{R} , given by $R = \{(a, b) : 3a - 3b + \sqrt{7} \text{ is an irrational number}\}.$ Then R is (1) reflexive but neither symmetric nor transitive (2) an equivalence relation (3) reflexive and symmetric but not transitive (4) reflexive and transitive but not symmetric Answer (1) Sol. For reflexive: $3a - 3a + \sqrt{7}$ is an irrational number $\forall a \in R R$ is reflexive For symmetric Let $3a - 3b + \sqrt{7}$ is an irrational number \Rightarrow 3b-3a+ $\sqrt{7}$ is an irrational number For e.g., Let $3a - 3b = \sqrt{7}$ $\sqrt{7} + \sqrt{7}$ is irrational but $-\sqrt{7} + \sqrt{7}$ is not. ... R is not symmetric For transitive: Let $3a-3b+\sqrt{7}$ is irrational and $3b-3c+\sqrt{7}$ is irrational \Rightarrow 3a - 3c + $\sqrt{7}$ is irrational For e.g., take *a* = 0, *b* = $-\sqrt{7}$, *c* = $\frac{\sqrt{7}}{2}$ R is not transitive 78. The negation of the expression $q \lor ((\sim q) \land p)$ is equivalent to (1) $p \wedge (\sim q)$ (2) $(\sim p) \lor (\sim q)$ (4) $(\sim p) \land (\sim q)$ (3) $(\sim p) \lor q$ Answer (4) **Sol.** $q \lor (\sim q \land p)$ \Rightarrow $(q \lor \sim q) \land (q \lor p)$ $\Rightarrow T \land (q \lor p)$ $\Rightarrow q \lor p$ Now, ~ $(q \lor p)$ $= \sim q \wedge \sim p$

79. Let $S = \begin{cases} x \colon x \in \mathbb{R} \text{ and } (\sqrt{3} + \sqrt{2})^{x^2 - 4} \\ + (\sqrt{3} - \sqrt{2})^{x^2 - 4} = 10 \end{cases}$. Then n(S) is equal to (1) 2 (2) 4 (3) 0 (4) 6 Answer (4) **Sol.** Let $(\sqrt{3} + \sqrt{2})^{x^2 - 4} = t$ $t + \frac{1}{t} = 10$ $\Rightarrow t^2 - 10t + 1 = 0$ $\Rightarrow t = \frac{10 \pm \sqrt{100 - 4}}{2} = 5 \pm 2\sqrt{6}$ Case-I $t = 5 + 2\sqrt{6}$ $\Rightarrow \left(\sqrt{3} + \sqrt{2}\right)^{x^2 - 4} = \left(\sqrt{3} + \sqrt{2}\right)^2$ $\Rightarrow x^2 - 4 = 2 \Rightarrow x^2 = 6 \Rightarrow x = \pm \sqrt{6}$ Case-II $t = 5 - 2\sqrt{6}$ $\left(\sqrt{3}+\sqrt{2}\right)^{x^2-4}=\left(\sqrt{3}-\sqrt{2}\right)^2$ $\Rightarrow \left(\left(\sqrt{3}-\sqrt{2}\right)^{-1}\right)^{x^2-4}=\left(\sqrt{3}-\sqrt{2}\right)^2$ $\Rightarrow 4 - x^2 = 2$ $\Rightarrow x^2 = 2$ $\Rightarrow x = \pm \sqrt{2}$ 80. Let the image of the point P(2, -1,3) in the plane x + 2y - z = 0 be Q. Then the distance of the plane 3x + 2y + z + 29 = 0 from the point Q is (1) $2\sqrt{14}$ (2) $\frac{22\sqrt{2}}{7}$ (3) $\frac{24\sqrt{2}}{7}$ (4) 3√14

Answer (4)

Sol. P(2, -1, 3) Plane: x + 2y - z = 0Let $Q(\alpha, \beta \gamma)$ Then, $\frac{\alpha - 2}{1} = \frac{\beta + 1}{2} = \frac{\gamma - 3}{-1} = \frac{-2(-3)}{6}$ $\therefore \quad \alpha = 3, \beta = 1, \gamma = 2$ Now distance of Q from the plane 3x + 2y + z + 29 = 0 $\left(d = \frac{9 + 2 + 2 + 29}{\sqrt{14}} = \frac{42}{\sqrt{14}} = 3\sqrt{14}\right)$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

81. Let $a_1 = 8$, a_2 , a_3 , ..., a_n be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170, then the product of its middle two terms is _____.

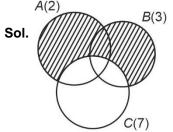
Answer (754)

Sol. Given, $a_1 = 8, a_2, a_3...a_n$ are in A.P.

Now 2(16 + 3d) = 50 $3d = 9 \Rightarrow \boxed{d = 3}$ Now 2(2a_n - 9) = 170 $a_n = 47$ 8 + (n - 1) = 47 $\boxed{n = 14}$ Product of middle two terms = $a_7 \times a_8$ = (8 + 18) (8 + 21) $= 26 \times 29$ = 75482. If $\int_{0}^{1} (x^{21} + x^{14} + x^7) (2x^{14} + 3x^7 + 6)^{\frac{1}{7}} dx = \frac{1}{l} (11)^{\frac{m}{n}}$ where *l*, *m*, *n* $\in \mathbb{N}$, *m* and *n* are coprime then *l* + *m* + n is equal to ______. Answer (63)

Sol.
$$I = \int_0^1 (x^{21} + x^{14} + x^7) (2x^{14} + 3x^7 + 6)^{1/7} dx$$

 $I = \int_0^1 (x^{20} + x^{13} + x^6) (2x^{21} + 3x^{14} + 6x^7)^{1/7} dx$
Let $2x^{21} + 3x^{14} + 6x^7 = t$
 $\Rightarrow 42(x^{20} + x^{13} + x^6) dx = dt$
 $I = \frac{1}{42} \int_0^{11} t^{1/7} dt = \frac{1}{42} \frac{7}{8} [t^{8/7}]_0^{11}$
 $= \frac{1}{48} 11^{817}$
 $\therefore I = 48, m = 8, n = 7$
 $\therefore I + m + n = 63$


83. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $f'(x) + f(x) = \int_{0}^{2} f(t) dt$. If $f(0) = e^{-2}$, then 2f(0) - f(2) is equal to _____

Answer (01)

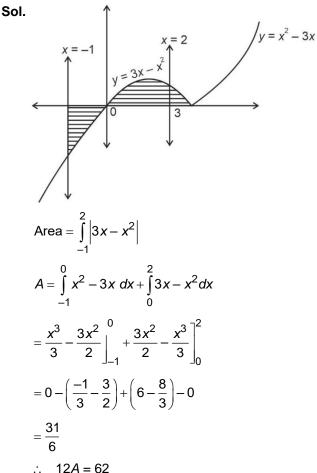
Sol. f'(x) + f(x) = k $\Rightarrow e^{x}f(x) = ke^{x} + c$ $f(x) = k + ce^{-x}$ $k = \int_{0}^{2} \left(k + ce^{-t}\right) dt$ $k = 2k + c \cdot \frac{e^{-t}}{-1} \Big|_{0}^{2}$ $k = 2k + c \left(\frac{e^{-2}}{-1} + 1\right)$ $-k = c \left(1 - \frac{1}{e^{2}}\right)$ $f(x) = ce^{-x} - c \left(1 - \frac{1}{e^{2}}\right)$ $f(0) = c - c + \frac{c}{e^{2}} = \frac{1}{e^{2}} \Rightarrow c = 1$ $f(2) = e^{-2} - r \left(1 - e^{-2}\right)$ $= 2e^{-2} - 1$ 2f(0) - f(2) = 1

- 84. If $f(x) = x^2 + q'(1)x + q''(2)$ and $q(x) = f(1)x^2 + xf'(x)$ + f'(x), then the value of f(4) - g(4) is equal to Answer (14) **Sol.** Let g'(1) = a and g''(2) = b $\Rightarrow f(x) = x^2 + ax + b$ Now, f(1) = 1 + a + b; f'(x) = 2x + a; f''(x) = 2 $g(x) = (1 + a + b)x^{2} + x(2x + a) + 2$ \Rightarrow g(x) = (a + b + 3) x² + ax + 2 $\Rightarrow g'(x) = 2x(a+b+3) + a \Rightarrow g'(1) = 2(a+b+3)$ +a=a $\Rightarrow a+b+3=0$...(i) g''(x) = 2(a + b + 3) = b $\Rightarrow 2a+b+6=0$...(ii) Solving (i) and (ii), we get a = -3 and b = 0 $f(x) = x^2 - 3x$ and g(x) = -3x + 2f(4) = 4 and g(4) = -12 + 2 = -10 $\Rightarrow f(4) - g(4) = 16 - 2 = 14$
- 85. The number of 3-digit numbers, that are divisible by either 2 or 3 but not divisible by 7, is _____.

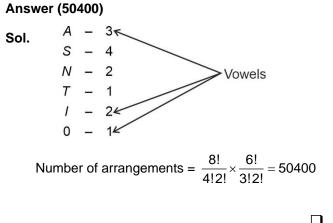
Answer (514)

A = Numbers divisible by 2 B = Numbers divisible by 3 C = Numbers divisible by 7 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ = n(2) + n(3) - n(6) n(A) = n(2) = 100, 102..., 998, = 450 n(B) = n(3) = 102, 105, ..., 999 = 30 $n(A \cap B) = n(6) = 102, 108, ..., 996 = 150$ n(2 or 3) = 450 + 300 - 150 = 600Now, $n(A \cap C) = n(14) = 112, 126, ..., 994 = 64$ $n(A \cap B \cap C) = n(42) = 126, 168, ..., 966 = 21$ $n(B \cap C) = n(21) = 105, 126, ..., 987, = 43$ n(2 or 3 not by 7) = 600 - [64 + 43 - 21]= 514 86. The remainder, when 19²⁰⁰ + 23²⁰⁰ is divided by 49, is _____
Answer (29)
Sol. 19²⁰⁰ + 23²⁰⁰

$$(21 - 2)^{200} + (21 + 2)^{200} = 49\lambda + 2^{201}$$
$$2^{201} = 8^{67} = (7 + 1)^{67} = 49\lambda + 7 \times 67 + 1$$
$$= 49\lambda + 470$$
$$= 49(\lambda + 9) + 29$$
Remainder = 29


87. $A(2, 6, 2), B(-4, 0, \lambda), C(2, 3, -1) \text{ and } D(4, 5, 0),$ $|\lambda| \le 5$ are the vertices of a quadrilateral *ABCD*. If its area is 18 square units, then 5 – 6 λ is equal to

Answer (11)


Sol.
$$A(2, 6, 2)$$

 $D(4, 5, 0)$
 $d_1 = 3\hat{j} + 3\hat{k}$
 $d_2 = 8\hat{i} + 5\hat{j} - \lambda\hat{k}$
 $\vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & 3 \\ 8 & 5 & -\lambda \end{vmatrix}$
 $= (-3\lambda - 15)\hat{i} + 24\hat{j} - 24\hat{k}$
 $\frac{1}{2} |\vec{d}_1 \times \vec{d}_2| = 18$
 $\sqrt{(3\lambda + 15)^2 + 24^2 + 24^2} = 36$
 $(3\lambda + 15)^2 = 1296 - 1152$
 $3\lambda + 15 = \pm 12$
 $3\lambda = -3 | 3\lambda + 15 = -12$
 $\lambda = -1 | \lambda = -\frac{27}{3}$
 $\lambda = -9$
 $\therefore \lambda \in [-5, 5]$
 $\therefore \lambda = -1$
 $5 - 6 (-1) = 11$

88. Let *A* be the area bounded by the curve y = x|x-3|, the *x*-axis and the ordinates x = -1 and x = 2. Then 12*A* is equal to _____.

Answer (62)

89. The number of words, with or without meaning, that can be formed using all the letters of word ASSASSINATION so that vowels occur together, is

90. Let $\vec{v} = a\hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{w} = 2\alpha\hat{i} + \hat{j} - \hat{k}$ and \vec{u} be a vector such that $|\vec{u}| = \alpha > 0$. If the minimum value of the scalar triple product $[\vec{u} \, \vec{v} \, \vec{w}]$ is $-\alpha \sqrt{3401}$, and $|\vec{u} \cdot \hat{i}|^2 = \frac{m}{n}$ where *m* and *n* are coprime natural numbers, then m + n is equal to _____.

Answer (3501)

Sol.
$$\vec{v} \times \vec{w} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 2 & -3 \\ 2\alpha & 1 & -1 \end{vmatrix} = \hat{i} - 5\alpha\hat{j} - 3\alpha\hat{k}$$

$$\begin{bmatrix} \vec{u} \ \vec{v} \ \vec{w} \end{bmatrix} = \vec{u} \cdot (\vec{v} \times \vec{w})$$
$$= |\vec{u}| |\vec{v} \times \vec{w}| \times \cos\theta$$
$$= \alpha \sqrt{34\alpha^2 + 1} \cos\theta$$
$$\begin{bmatrix} \vec{u} \ \vec{v} \ \vec{w} \end{bmatrix}_{\min} = -\alpha \sqrt{3401}$$
$$\alpha \sqrt{34\alpha^2 + 1} \times (-1) = -\alpha \sqrt{3401}$$
$$(taking \cos\theta = 1)$$
$$\Rightarrow \alpha = 10$$
$$\vec{v} \times \vec{w} = \hat{i} - 50\hat{j} - 30\hat{k}$$
$$\cos\theta = -1 \Rightarrow \vec{u} \text{ is antiparallel to } \vec{v} \times \vec{w}$$

$$\vec{u} = -|\vec{u}| \cdot \frac{\vec{v} \times \vec{w}}{|\vec{v} \times \vec{w}|} = \frac{-10(i - 50j - 30k)}{\sqrt{3401}}$$
$$\left|\vec{u} \cdot \hat{i}\right|^2 = \left|\frac{-10}{\sqrt{3401}}\right|^2 = \frac{100}{3401} = \frac{m}{n}$$
$$m + n = 3501$$